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We derive expressions for the effective diffusion coefficients D, (f = $, . , , N) defined 
in [r*L.] in terms of the ratios of me mass diffusion fluxes for an arbitrary N-compon- 
ent mixture in a boundary layer, Sufficient conditions for the identity of the concent- 
rations, diffusion fluxes, and eneralized Schmidt numbers Sr = tr / (@I) across the 
“frozen” boundary layer are o I! tained. Using a generalization of the analogy between 
mass transfer coefficients based on the analytical and numerical solutions of the diffu- 
sion equations in the “frozen” boundary layer, we reduce the determination of the co- 
efficients D, for an arbitrary N-component medium at the wall to the solution of al- 
gebraic equations with and without blow-in. We solve this system approximately and 
obtain explicit expressions for D,,‘for 
layer (at the surface) of thermoplastics Z 

pica1 mixtures which a 
ased on phenol-formal 

lphear in the boundar;j 
e yde resin, which e- 

compose in a dissociated air stream in planetary atmospheres. Usin 
form of solution of the boundary layer equations at the outer edge o B 

the asymptotic 
the layer, we de- 

rive exact analytic formulas for the effective diffusion coefficients D,, in an arbitra- 
ry N-component system. The behavior of the corresponding generalized Schmidt num- 
bers Sr is described qualitatively and their approximate (exact at the boundaries) val- 
ues across the boundary layer are given. These results simplify appreciably the numeri- 
cal and analytical solution of the equations for an arbitrary multicomponent dissociated 
boundary layer at the surface of a heat-insulating coatin 

B 
which disintegrates under the 

action of heat (s]. This in turn enables us to automatica ly extend various solutions, in 
particular the correlation formulas for the heat and mass transfer coefficients obtained 
in the “binar ” 

Ji 
boundar 

accomplish rs simply 
layer approximation, to a multicomponent layer. We can 

k- 
introducing the appropriate effective diffusion coefficients 

into these solutions [‘I. effusion in specific multicomponent mixtures is also dealt 
with in an approximate manner in Is]. 

1. In the thin asymptotic boundary layer approximation the normal components of 
the mass diffusion fluxes Jr = p1 (vr -‘LI) = piV, in a multicomponent gas mixture 
flowing pat a surface are related to the gradients of the molar (numerical) concentrat- 

ions Z, b the Stefan-Maxwell equations [‘I (we neglect thermal diffusion which is a 
second-or d er effect I’] ; the barodiffusion effect and lhe influence of the VISCOUS im- 
pulse transfer I81 are negligible by virtue of the boundary-layer-theory approximation) 

2-i 3x($A) (i=l,..., N-1) 0.1) 

where 

ni Zi(‘, n= 
n 

v = i cjvj, 
j-l j=l 

ci = SZ, 

N N 

m= 2 zjmj. 2 JjGO 

j=l f-1 
(i.2) 

184 



Here D,, are the binary diffusion coefficients, p1 density, PI, the number of moles 
(particles) of the i-th component per unit volume, n the total number of moles per 
unit volume, uc the mean statistical velocity of the Mh component, v the mean 
mass flow rate of the mixture, V, the rate of diffusion of the I-th component, e, mass 
concentration, ml the molecular weight of the I-th component, m the molecular 
weight of the mixture, and y the coordinate normal to the surface. Relations (11) 
are preferable to 

I,&?!_ p i Dij % (i = 1, . . ., N) 

j=l 
(I.31 

for the diffusion fluxes I.1 obtained from (1.1) by solving them for J1 . This is beca- 
use (1.1) contain only the binary diffusion coefficients which are available from liter- 
ature [@I for m-any component pairs, while (1.3) contain the multicomponent diffusion 
coefficients D . which are defined as the ratios of complicated N-th order determi- 
nants and depezd on the composition of the mixture and on ?/r N (N -i) binary diffu- 
sion coefficients Dij . Moreover, substitution of (1.3) into the diffusion equations 
yields a system of equations for the concentrations which have not solved in the case 
of higher-order derivatives. This leads to great difficulties in obtaining the actual sol- 
utions even for the simplest problems of diffusion in stationary media [lo]. Using (1.2) 
to convert from 0x1 / ay 

N N 

to &, } 8~ in (1.1) ,we obtain 

Equation (1.4) implies that in the case of multicomponent mixtures with unequal bi- 
nary diffusion coefficients, the diffusive flux J1 of the i-th component cannot, in ge- 
neral, be expressed in terms of the gradient of concentration alone. Some particular 
cases where the flux J, can be expressed in terms of the concentration et only are 
dealt with in [‘I. 

Our purpose in the present paper is to inaoduce a definition of the effective diffusion 
coefficients based on exact expression (1.4)) and to compute these coefficients across 
the frozen boundary layer (when all reactions take place on the surface) for an arbiaa- 
ry N-component mixture. 

Relations (1.4) can be written formally in the form of Fick’s laws, 

J,=P,~,=- pDtay(i=i,. . ., N) 

where the effective diffusion coefficients D, introduced in this manner can be obtained 
from the following N - i independent relations 

(i.6) 

(1 = 1, . . ., N) 

These expressions indicate that in the general case of arbiaa 
of the components the effective diffusion coefficients can 

diffusion properties 
found from a known 
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specific problem. However, we shall see later &at in the boundary layer the coeffi- 
cients Dr depend only on the limiting concentrations at the wall and at the outer edge 
of the boundary layer, and on the binary diffusion coefficients, and that they are pcac- 
&ally independent of the blow-in intensity and of other definin 
problem. In other words, as far as their properties are concerne P 

parameters of the 
, the effective diffu- 

sion coefficients Dr behave just like binary diffusion coefficients with boundary values 
of the concentrations. (The corrections are necessitated by the cress-influence of the 
diffusion of orher components.) 

2. First let us consider the behavior of the effective diffusion coefficients for certain 
gas mixtures. Although obtained for particular mixtures, our findings will also hold for 
multicomponent boundary layers at the surfaces of thermally disinte 
tics. The binary diffusion coefficients are usually nearly equal [*f or components with tg 

rating thermoplas- 

close (equal) molecular weights. We call the components M and M’ “components 
with similar (equal) diffusive properties” if (3 

m (M) fi: m (M’) (m tW = m (M’)) (2.1) 

23 fhf, i) XD (API) P (M, 0 = B (M‘, G) 

Theorem 2.1. If a oup of components with equal diffusion properties can be 
isolated in a gas mixture, tB’ en the effective diffusion coefficients (1.6) for all the com- 
ponents are not explicitly dependent on the diffusion fluxes of tile components belong- 
m 

B 
to this group. 
or a one-component group this theorem obviously follows from (1.6). In the general 

case we split the second sum over j in (1.6) into two parts: me first part ranging from 
I ‘=Ii to N“ and the second art from i = N’ i- t to N, where N - N’ is the number 
of components with equal d:! usion properties; we men apply identity (1.2) for the diffu- f! 
sion fluxes to (1.6) to obtain 

(2.2) 

Corollary. If the mixture under comideration consista of a group of components 
with similar diffusion properties (index M) and a single additional component 1, then 
the effective diffusion coefficient for this component is 

I), = D tf, W (2.3) 

The effective diffusion coefficients for the remaining components are in this case 
given by 

3 When a chemical symbol or a capital letter such as A or M has 03 be used as a 
subscript, it will be inclosed in paranthesea, e. g. D,, = D (M, t) or D, = Lt (A) 
etc. 
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If the group M consists of a single component (i.e. if the mixture is binary), then 
(2.4) implies directly that LJ (M) - D (hi, i), as expected. The above theorem is of 
practical value, e. g. it can be applied to mixtures generated in a high-enthalpy air 
or CO, flow fn me boundary layer (at me surface) of a thermally disintegrating pIas- 
tic based on phenol-formaldehyde resin [t& 

Even though components such as OS, N,, NO, CO, CN, HCN, and C, appearing during 
this process do not strictly satisfy the conditions (2. l), nevertheless the assumption of 
equality of their diffusion pro rties does not introduce hr e errors into the calculation 
of the effective diffusion toe frcrents using (2.2) instead o pr’. f (1.6). This is confirmed by 
the following values of the ratios of the binary diffusion coefficients for these compon- 
ents at T = 2000” K (these ratios are practically independent of temperature): 

The differences of the molecular weight ratios m / ml - m / m (Ml (i = i, . . . 

.., N - N’) for these components do not exceed 0.05 to 0.08. 
terms in square brackets in (1.6) referring to the components with 
perties are replaced by the corresponding terms in which the subscript i is replace 
M , then the resultin 

f 
error of estimating JI, from (2.2) instead of (1.6) will not ex- 

ceed l@%.and will in act be much smaller PI. 
Equating the diffusion properties of just the”rwb components CO and Nq, which toge- 

ther constitute the major portion of many interesting mixtures, we obtain 

m (CO) = m (N,) = 28, 
l?(i, CO) 
D (i, Ns) 

r=i Jto.005 (i=i, . . ., N) 

Formula (2.2) in this case entails an error not exceeding 1%. 

3. Equations of diffusion of the components are required for investigating the proper- 
ties of the coefficients D,. concentration fields, and diffusion fluxes across the bounda- 

x 
I: layer. These equations”in the boundary-layer approximation for a do-d~e~ional 

ow are given by 

P(U $+v~)+-$-J(=O (i=i,. . .t N) (3.9) 

where t and y are the coordinates tangent and normal to the surface of the body 
respectively; u and v denote the corresponding components of the velocity vector. 

New independent coordinates are convenient in actual solution and qualitative ana- 
lysis. They are given by 

where p is the viscosity coefficient, U, (2) the velocity of nonviscous flow at the sur- 
face of the bod 
and k = i for & 

r (z) the radius of the cross section of the solid of revolution (k = 0 
e plane-parallel and axisymmetric problems, respectively); l are the 

conditions at the outer boundary; w is the condition at the wall. 
We shall attempt to find the velocities u and u and the diffusion fluxes in the form 

u =u W(E*$ 
, atl ’ 

- pvrk = (3.3) 
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Ji = uark Q,p,p,~,f” (25)“” Xi 0 =l, *. ,) N) 

cp (E, ‘1) = f (I, 11) + 4 (g - $ f qp-) (3.4) 

Inserting u and u into the equation of continuity, we find that the latter is satisfied 
identically, that the impulse equation projected on the z-axis yields a certain equa- 
tion for the function f which we omit givin 

! 
here, that the heat influx equation is not 

required, and that equations (3.1) of the dif usion of the components become 

(3.5) 

Stefan-Maxwell equations (1.4) in these variables are 

where 
N 

,+j= P 
C,skj---$sijs sij=- 

& 
(i, j=I, . . ., N) (3.7) 

If we replace derivatives act / q in (3.5) by their expressions in (3.6). then the 
fluxes are given by the following system in partial derivatives: 

Equations (3.6) and (3.8) with the boundary conditions for the concentrations (*) 
ct(&, 0) =ci,(E), ci(e, 00) =qe=const (I = i,..., N) , the initial conditions ci (0, T+ 

‘C{O(tl) (i = I,.,., N) , and with the functions q([.t$ and l([, ‘I) given, constitute 
a mixed problem for a system of 2(N-_i) independent nonlinear equations. In general, 
solution of this problem is a prerequisite for calcuiating the generalized Schmidt num- 
bers from the formulas 

N N 
s,= p - l-’ ac, _ _--___ 

P4 xi atl 
2 zj&j + Ci 2 Atj 2 (i=l, * . .) N) (3.9) 
j=l j=l 

l ) The conditions cl (E, DE) = const hold for all blown-in components. They also hold 
for the dissociation products of the oncoming sheam, provided that the flow is frozen 
at the outer edge of the boundary layer. They also hold with a high degree of accuracy 
when the flow is in equilibrium, since in this case concentrations of the dissociation 
products vary little with distance from the critical point along the body 1111. 



Theorem 3. 1. If the mixture contains group M of components with equal 
diffusion properties (see (2.1)) whose concentrations are all equal to zero at infinity 
(or at the wall), then all the generalized Schmidt numbers relative to the concentration 
z(M) and all relative diffusion fluxes I(M), where 

c (Ml 
‘(w=e(M) 

c (W or 2(M)=- 
w c,(M) ’ 

Z(M) =s 
ID 

Or Z(M)=+ 
c ’ 

are identical1 equal to each other for all these components over the whole thickness 
of the frozen i oundary 
are kept constant. 

layer provided that the boundary values of the concentrations 

Proof. If groups of components with equal diffusion properties exist, then by (2.2), 
Eqs. (3.6) and (3.8) and the corresponding boundary conditions for the-se components 
can be written as 

N N’ 

--1v=Z(M) 2 zjS(M, i)+z (M) 2 [A(M, j)-A(M, M)] Xj (3.10) 
j=l j=l 

Zy(E, 0) = 1, ~,(E,~)=O,~,(O,rl)=ZO(M) (3.12) 

Formulation of roblem (3.10) - (3.12) implies that for a frozen boundary layer and 
de,(M)/dt=-0 I% e equations for the relative concenuations and fluxes and the boun- 

dary conditions are identical for all components of the group M . Then from the assum- 
ption of the uniqueness of the uniqueness of the solution implies directly that 

Q. E. D. 

Corollary. If all components not belonging to the group M form another group 
A of components with equal diffusive properties and vanish (let us say) at the wall, 

then all the relative concentrations a (A) = c (A) / cc (A) and all relative diffusive 
fluxesZ(A)=X(A)/c,(A)(A=i,..., N’) for these components are identically equal 
to each other for the frozen boundary la 
numbers are equal to the binary Schml 4 

er and cI (A) - const; the generalized Schmidt 
t numbers 

S(A) = .!i (A, M) (A = I, . . ., NJ (3.14) 

‘i%e first two assertions can be proved as above; the numbers S (A) can be determin- 
ed from system (3.10) written out for the group of components A 

__I azt4 
-3iy--= W[S(A. W+(S(A,A)--S(A,M)) ;.(A)]+ 

A=1 - 
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+r(A)+IS(A, M)--S(A,A)J x X(A)(A=l,...,N,), N,=N--N, (3.15) 

Recalling (3.13), we can write 

This together with (3.15) implies statement (3.14)) 

1 az (-4 s(A)=------_ 
I(A) a7 SF, W (A=l,...,NJ 

(3.16) 

(3.17) 

Theorem 3.2. If the whole mixture can be separated into two groups of compo- 
nents A and M each group possessing equal diffusion 
the necessary and’sufficient condition for the diffusion o P 

roperties within itself. then 
such a mixture to be descri- 

bable in terms of a single binary diffusion coefficient D (A, &f) is that these compon- 
ents diffuse into each other, and that the boundary values of the concentrations be con- 
stant. 

To prove this we make use of equations (3. ll), which in the case of just two groups 
of components can be written as 

*tn 
--I-~=,(M,[S1A,M)+(S(M, Ml--S(A,M)) 2 z(M)]+ 

M=l 
*&I 

+cPl)~IS(A. Ml---SW, Ml] 2 X(M) (3.18) 
I=1 

From this it follows at once that if all components belonging to the group M satisfy 
the boundary conditions cd(M) = 0 (M - i, . . . , IV,) (boundary conditions c, (M) - 
-O(M=i , . . + NM),need not be included here, since they are already satisfied by 
all the componena of A), then 

*, *M NM 
m 

c(M)m(M) x XW)=c (M) m(M) _m-_l(Mj 2 c,,,(M)=c,(M)I(M) 2 z(M) (3.19) 
M-1 Y==l M=l 

which on substitution into (3.18) yields 

S(M)=- ++=S(A, M) 

Similarly. for the components of the Group A we have 

D (A) = D (M) = D (A, M) (3.21) 

(3.20) 
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If even one of the components of the group M fails to satisfy the condition e, (M) - 
= 0 (this can ha pen in the case of the component Ns in a dissociated air stream), 
then, denoting Jlis component symbolically by hJ, , we obtain from (3.18) 

1 

‘%a= 
ac (W 

---=S(A, M) + 
X(N*) i’q 

+ & IS (M, M) - s (A, WI (1,~ cw (W 0 (Ml - c W & (3.22) 

From this we see that S (N,) * S (A, M). When C, (NJ d= 0 we infer from (3.22) 
that the condition (3.21) is necessary for interdlffuion. 

Corollary. If n(?QN-2)or N- i or N components in such a twqroup 
mixture become zero neither at the wall nor at the outer edge of the boundary layer, 
then in general we have, a f 2 (or N - 1 and N , respecitvely) distinct effective 
diffusion coefficients. At the same time we have only three distinct binary diffusion 
coefficients, namely D (A, A), D (A, hi), and D (M, M). This is due to the fact that 
the effective diffusion coefficients for such components depend on the values of the 
ratio et0 / cl.,. This general case does not occur in the theory of heat transfer and mass 
ablation either in air or in planetary atmospheric streams, nor does it arise in the majo- 

rity 
of combustion product streams. 

ndeed, in determining the heat flux from a dissociating gas of arbitrary chemical 
composition we find that the diffusion fluxes of the initial components of the incident 
flow at the wall can be expressed, b 
elements, in terms of the diffusion K 

virtue of the law of conservation of the chemical 
uxes of the dissociation products [‘I, so that the 

latter only require knowledge of the number St But all these components satisfy the 
boundary conditions qr = 0, i.e. S, can be computed for them (see Sects. 4-6). If 
these corn onems are similar atoms, then (3.21) will hold for them. In determining 
the rate o P ablation of disintegrating plastics we find that in air the two conditions 
c,,, (NJ #= 0 and cI (N,) # 0 can be simultaneously satisfied for N, only. However, 
since a single component can always be omitted from comideradons, the need to cal- 
culate S (N,) is thus obviated. 

4. The authors of I1@] assumed that the corresponding Schmidt numbers S, are 
positive within the boundary la er between the 
mass aansfer coefficients both t 

in order to establish a general analo y 
or selfsimilar and for nonselfsimilar so udons of equa- P 

fions of a muldcomponent boundary layer in the case where only heterogeneous reac- 
dons of the type 

($)W=~(~)~=~(-$)~, Acc(=Q-et,,, (i=l,.,.,N) (4.1) 

occur. Here exponent w: varies from e.g. 0.5 to 2 (moderate blow-in intensities) 
when the temperature factors are not too small (TJT& 0.1) ; its value depends on 
the temperature factor, the blow-in intensi 
numbers at the wall, the pressure 

,.the values of the generalized Schmidt 
the surface of the solid, and the con- 

It is remarkable, however, 
below by meam of (4.1). 

are practically independent of x (0.5 < n 6 2). 
Let us first compute 9,” for weak blow-in. We find that 9 (0, 0) = 0.2 to 0.6. 

when x x 1. On the other hand, .when n = 4 , men the solution for Djt, .can be obt- 
ained very simply and without any rest&dons due to me diffusive properties of the 
components in the mixture. Inserting (4.1) with x = 1 into (1.6). we obtain the 
following linear algebraic system of equations defining &-a _ D,, : 
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iZ=I (i=i,...,N) (4.2) 

where 

N 

qj -- D (Wk - Wj) S&j - qsij 1 Acj C( 
- - 

k==l 
Act cj 

It should be kept in.mind that the coefficients IQ (1, j = I, . . ., N) should be com- 
puted under the conditions at the wall. The solution of (4.2) is 

1 P& -= - = 
St, ( ) P w 

where At,+ is the alyebralc complement of the element nit of the determinant 
Det // ak[ 1. From (4.3) it follows lhat if Act -* 0 for some component, then the cor- 

responding S,, may become f 00. We have, however, excluded this case (see Sect. 3). 
It follows therefore that the expressions for ai1 are finite for the remaining components, 
and additional considerations indicate that all S,, will also be finite (see below). If 
the given mixture contains a group of components with similar (equal) diffusion proper- 
ties (see Sect. tL), then, for these components S,, can be written at once (using (2.2) 
and (4.1) with x = 4 ) as 

where S,, (1 = 1, . . ., IV) for the remaining components must be obtained from the 
following system of lower order N’ = N- N, 

+($IZjsij)W + 5 (&j-,4 (i, M))2$=L (i=l,. . ., N) (4.5) 
j==l 

In particular, if all these components satisfy the boundary conditions E,~ = 0 (1 = 
= I, . . ., N’), then (4.5) immediately yields 

NM 

&II = 2 = (W 8 (i, M) (i = t . . ..N’) (4.6) 
M=l 

Inserting (4.6) into (4.4) we obtain the remaining generalized Schmidt numbers 
S(M)(M=f,...,N,). 

In conclusion we note that the following assertion can be proved readily: if the mix- 
ture can be divided into several groups of components with equal diffusive properties 
within each group and if the components of each group satisfy similar boundary condit- 
ions, i.e. if e,(M)/ AC(M) = 0 or -1. then the effective diffusion coefficients at 
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the wall are equal within each group. Using the resulrs of Sect. 3, we can extend this 
theorem to the whole of the boundary-layer region (9 

5. When x lies in the range (0.5 ;SF x g 2). the coefficients Lt,, in the generalized 
analogy (4.1) should be obtained from the transcendental equations, whose solution is, 
in the general case, awkward. Nevertheless, in the case of mixtures appearin in the 
boundary layer of a thermoplastic burning in an air or CO, stream, a group o B compo- 
nents with similar diffusive properties exists, e.g. Ns, CO, HCN, C&which. together 
with 0, N and C atoms, consitutes the main bulk of the gas in the boundary layer [*I. 
Numerous other components such as H, MS, Si, H,, H,O, SiO, SiOs, MgO, CO*, Sic, 
SiCs, SisC, SiN, CH, CH,, CH,, CHI, as well as other hydrocarbons and radicals, con- 
stitute a minor part of the mixture (less than 20 to 25%). 
such mixtures enables us to obtain an ap 

This remarkable property of 
roximate (analytic) expression for the genera- 

lized Schmidt numbers at the wall for ar rtrary x and an arbitrary number of compon- % 
ens in the mixture. 

Let us therefore consider mixtures satisfying the following conditions: 
1. A group of components (index M) with similar (equal) diffusion properties exists, 

and constitutes the main bulk of. the gas at the wall. All the components of this group, 
with the possible exception of one, satisfy the boundary conditions 

e&&E. -) = e,(M) = 0 (M = t, . . ., NM) (5.1) 

2. Let us also assume, for the sake of completeness, that there is a second group of 
components (index A) with similar (equal) diffusion properties whose components (e.g. 
0, N) satisfy the boundary conditions 

CA. GPO) = e, (A) = 0 (A = f, . . .( NJ (5.2) 

3. The remaining components, which are present in small amounts, satisfy the boun- 
dary conditions 

Cr (E, 00) = ere = 0 . (f # A, Ml (5.3) 

Then, takin into account (4.1) and the conditions (5.1) - (5.3), we find from (2.2) 
that at the wa fi (the subscript IO is omitted) 

V#A) (5.5) 

*) Non-selfsimilar flows require an additional condition, i.e. that the concentration 
gradients at the borders of the boundary layer be equal. 
fy this condition. 

All combustion products satis- 
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where 
m 

i +a”‘+- m fq Vl* 

@(AM) _I 
D (Ah) 

ZR, 

‘ij=* - 
D(i, M) \ m(M) 
r>(j t M) f 

D(i, M) 
mi -D(i, > 

(5.6) 

A=1 

From (5.4) it follows that the effective coefficients at the wall for the components 
belonging to Group A can be obtained explicit1 and independently of the remaining 
coefficientr. Similarly, if the concentrations o Y any of the components belonging to 
the Group M (e.g. 0, or NO) are equal to zero at the wall, then (2: 2) immediately 
yields the following expression for these components: 

D (NO) = D (0,) = D (M, M) (i + e”)-i 

These components need not satisfy boundary conditions (5.1). For mixtures appearing 
in the boundary layer at the surface of the thermoplastics disintegrating in air or CO, , 
we have ldA)l, f dM 1. I e”) I , I ej 1 <i and, as a rule, 1 ef 1 g 0.05 - 0.10 1 bt, J. Thus 

the solution of the following system (the subscript w is omitted): 

1 1 I 1 
D.‘“) -*m-- 1 D(L, M) ------+ .D(A, M) (“$Oy)>‘~,* (A) (i =/?: 

can serve as the zeroth a 
tE 

proximation of the coefficients D,, for the mixtures consi- 
dered, since in the zero approximation we have 

m/m(M)=i, D(O)(A)=:D(A, hi), m=2 
m(A) 

With x= i the solution of (5.7) is 

The solution of (5.7) with x # i was obtained for certain components by numerical 
methods; the results ap ear in Table 1 (values in parentheses). The table shows that the 
effective diffusion toe frcients are weakly dependent on x for all componenrs except Pa 
H,, i.e. that the D,, depend chiefly on the diffusion properties of the components 

when the concentration c,,* (A) of the Group A of components at the outer edge of the 
boundary layer is given. 



(:aItwlating the cffwtivr dtffmlon coeefficientr m a houndary layer 195 

Table 1 

D (810s. M) D WI. M) 

D(o) (910,) D(O) 0.b) 

0.5 1 0.5 I 1 

0.83’r 0.7i9 I I 0.854 
(0.645) (0.743) (0.826) 

0.769 I 0.628 
I 

0.924 
(0.805) (0.703) (0.886) 

0.799 
(0.718) 

0.996 
(0.770) 

Consequently, a satisfactory solution of (5.7) can be obtained for any K in the range 
(O.S&%& 2) if the solution of (5.8) is substituted into the right side of (5.7). This 

yields the following approximate solution: 

D(i, M) 
-=I- 

D&O) 

A comparison of approximate solution (5.9) with the exact one (values in parenthe- 
ses) is given in Table 1. We see that the basic effective diffusion coefficients D, (81) 

are obtainable from (5.9) with an error smaller than 0.5%, while D (El,) is obtainable 
from (5.9) with the same accuracy only for x = i. For this reason, the values of D (H,) 
should be taken from the Table if x differs markedly from unity. Let us now insert the 
zeroth approximation (5.9) into the terms under this summation sign in (5.5) (this sum 
contains the small factors B,,c, ). Neglecting the squares of small order terms e (M, 
j) c,, etjcl (j # A, M) we obtain 

D (i, W 
Di 

= i + 8(i) + 2’ - $=J [b (i, A) + e (i, A)] (y)X~B* (A) (i #A) (5.10) 

where 

The solution of this system for x # i can be obtained as before 

D (6 W 
Di 

= 1 + et’) + 2’ -s [a (i. A) + e (i, A)] ( D~i!A~) >i((i -!- 8”’ i- x’y X 

x 1-c 
[ $$j- (a (i. A) -I- e (6 A)) D!A) D (1, M) c@* (A)]-" (5.11) 
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When x # i , the solution given by (5.11) entails an error of less then 5% for all 
component except for the low-molecular-weight Ii,. When x differs appreciably from 
unity, the effective diffusion coefficient for Hs should be obtained using the following 
transcendental equation: 

(5.12) 

Analysing the solution of (5.11) we find that the presence of any component not bel- 
onging to Group M will not affect significantly the effective diffusion coefficients if 
and only if either the diffusion properties of this component are similar to the diffusion 
properties of Group M. (e.g. D ft, M) ID (1, SO), D (f, W-/D (1, CO,) s 1.2), or 

the concentration of this component is low (e.g. c (H,) < 0.01 -+ 0.02). 

We find that these conditions are almost always fulfilled in the case of a high-temp- 
erature boundary layer at the surface of a disintegrating plastic. An appreciable influ- 
ence on the value of D,, rs exerted by the diffusive counterflow of atoms towards the 
wall. This dependence is expressed in (5.11) in terms of the degree of dissociation of 
the outer flow c, l (A) - ce (0) -I- C, (N). It follows that to within an error of 5 5% 
(provided that cw (MJ -I- cw (M,) + . . . cw (MNy) Z 0.7) we can obtain the effective 
diffusion coefficients at the wall using the formulas (5.9) where we take N, as our M 

We note that the error present in (5.9) depends on the accuracy with which the binary 
diffusion coefficients (gas kinetic potential parameters of molecular interaction) are 
known. 

6. Let us turn our attention to the behavior of the generalized Schmidt numbers 
(effective diffusion coefficients) at the outer edge of the boundary layer. As q -, 00 
the last term in (3.8) tens to zero faster than the penultimate term (see below), There- 
fore the behavior of the solution for large ‘1 (i.e. cp (E, q) + a (&) +, ‘1 - T)) as ‘1 --, 00 ) 
should be studied with the help of the following system of equations 

For large v the asymptotic solution of (6.1) is 

where yl is an unknown constant and the parameter b > 0. The latter follows from 
the physical condition, since all the fluxes XI should tend to zero as q - CO, or from 
a more detailed inv~tigation of the characteristic equation for A obtained by substitu- 
tin 

B 
the solution (6.2) into the firsts stem of (6.1). 

or all components vanishing at in mity , e.g. for all combustion products in an air f: 
stream, cl, = 0. Then, by (6.2) we obtain from (3.9) the following expression for the 
generalized Schmidt numbers: 
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S,,-A=Aj 
00 

(Cir = 0) (6.4) 

Let us denote the smallest of the generalized Schmidt numbers given by (6.4)) by 
8,,#%). As a rule, this will be the Schmidt number associated with the components 

of smallest molecular weight. By (6.4), provided that only atoms and molecules are 
present at the outer edge, it is equal to 

(6.5) 

Then the atomic and molecular fluxes, together with the X (H,) flux, will be the 
only remaining ones for the components vanishing at infinity in the system (6.1) as 
q&m. In order to simplify the argument to follow , we limit ourselves to the prac- 
tically important case where a Group A of atoms exists at infinity, their concentrat- 
ion at the wall being zero, and where there are 0, and N, molecules which have 
equal diffusion properties and whose concentrations at the wall can assume arbitrary 
values (the case of an arbitrary composition with q * 00 , is discussed below). Then 
the system (6.1) becomes 

- + = X4 [ze* (A) S (i, A) 4 (1 -z;* (A)) S (k WI -t 
al 

NA 
2,” (A) = 2 =,,(A) (i = A, OS, Ns) (6.7) 

A-1 

If the solution of (6.6) is sought in the form (6.23, then the parameter A, is given 
by a third-degree characteristic equation (the derivation is omitted) whose roars are 

)*l=‘o~(~* Hd [ 
1 -c,+(A) SW Hs) 

‘+1+$+(A) ( m-1 CD, b-&,(A, M) 

b= S, (A. M) [i,+ 
1 -cd+ (A) S (M, M) 

i+c,+(A) S(A, M) -’ >I 43 
(6.8) 

It is easily seen that kr < As < As, so that only the term contining the smallest A 
will remain in the general solution for the fluxes as ‘1, -, 00 . Then, by (6.4), me 
Schmidt numbers at infinity for all components. not vanishing at infinity, i.e. for 
S(A), S (O,), S (N,), are equal to a.,, i.e. to the effective Schmidt number of the 
lightest component diffusing from the wall and vanishing at the exterior border of the 
boundary layer (see formula 6.5)). 

Generalizing this result, we obtain the following theorem. 

Theorem 6. 1. If N, components exist at the outer edge of the boundary layer 
and there is a light component (e.g. H,) at the wall, such that its binary diffusion 
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coefficients exceed all the remaining coefficients in value, i.e. D (H,, i) > Dij 
(1. j = I, . . ., N,) and if this light component vanishes at infinity, then all genera- 
lized Schmidt numbers (coefficients Dl) for these components are equal and given by 
(6.4)as q+~. 

Corollary. If the lightest component is among the components not vanishing at 
infinity, then the effective diffusion coefficients for these components at infinity are 
equal to the smallest root of a characteristic equation which can be obtained from (6.1) 
if its solution is sought in the form of (6.2). 

Comparing (5.8) or (5.9) with (6.4), we find that the generalized Schmidt numbers 
at the wall and at infinity are almost equal, except in the case of S (H,). Additional 
numerical solutions given in [rr] show that St / S (i, A) have practically no extremum 
within the boundary layer, i.e. that the generalized Schmidt numbers vary as the bina- 
ry Schmidt numbers for the given boundary values of the concentrations. In the case of 
atoms, the Schmidt numbers vary from S(“)i,,, = S (A, M) to the values given by (6.5). 

Finally, using the properties of the system (6.1) and (6.2) we can easily prove the 
statement that rf the concentration of any component is zero at the wall or at the outer 
edge of the boundary layer, then the corres 
sitrve within the boundary layer, provided 91 

onding generalized Schmidt number is po- 
at the blow-in intensity is sufficiently small. 

We conclude that for real mixtures appearing in the process of combustion of thermo- 
plastics in a dissociated air stream it is sufficient to introduce the following five dist- 
inct effective diffusion coefficients: D (M)(M = CO, CN, HCN, C,, C,), D (0,) = 
= D (NO),D (SiO) =: D(COJ, D (HE), in the frozen boundary layer. Expressions 
for these coefficients can be obtained from the general formulas given above. 

The author thanks 0. N. Suslov for his useful criticism of the present paper. 
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